## Formulas

## Ohm's Law

:

$$
E=I \times R
$$

$$
\mathrm{I}=\mathrm{E} \div \mathrm{R}
$$

$$
\mathrm{R}=\mathrm{E} \div \mathrm{I}
$$



Remember:

$$
\begin{aligned}
& \mathrm{E}=\text { voltage, in Volts } \\
& \mathrm{I}=\text { current, in Amperes } \\
& \mathrm{R}=\text { resistance, in Ohms }
\end{aligned}
$$

## Ohms Law for Series Circuits:

## Resistance in Series:

$$
R_{t}=R_{1}+R_{2}+R_{3}+\ldots .
$$

where:
$R_{t}=$ total resistance in series
$\mathrm{R}_{1}, \mathrm{R}_{2} \ldots$ are individual resistors

## Voltage in a Series Circuit:

$$
E_{t}=E_{1}+E_{2}+E_{3} \ldots
$$

where:
$E_{t}=$ total voltage applied to the circuit
$\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$. = the voltage drops across the individual resistors

Rule: In a series circuit the total voltage drop equals the sum of the individual voltage drops.

## Current in a Series Circuit:

$$
I_{t}=I_{1}=I_{2}=I_{3} \ldots .
$$

where
$\mathrm{I}_{\mathrm{t}}$ current in the series circuit
$I_{1}, I_{2}, \ldots$. currents through each resistor which are the same as the total current

Rule: There is only one path for current to flow in a series circuit, therefore the same current flows everywhere in the circuit and is always the same as the total current.

## Ohms Law for Parallel Circuits:

## Resistance in Parallel:

There are two formulas.

1. If only two resistors are in parallel, use the following formula:

$$
\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{R}_{1} \times \mathrm{R}_{2}}{} \mathrm{R}_{1}+---\mathrm{R}_{2}
$$

2. If more than two resistors, use the following formula:


Note: The total resistance in parallel is always less than the value of the smallest resistor.

Voltage in a Parallel Circuit:

$$
\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{1}=\mathrm{E}_{2} \ldots .=\mathrm{E}_{\mathrm{N}}
$$

Note: Voltage is common to all elements in a parallel circuit.

## Current in a Parallel Circuit:

$$
I_{T}=I_{1}+I_{2}+\ldots .+I_{N}
$$

Note: the total current is the sum of all the individual currents flowing in all of the various branches of the parallel circuit.

## Power:

$$
\begin{aligned}
& P=E \times I \\
& P=I^{2} \times R \\
& P=---- \\
& R
\end{aligned}
$$

Where:
$\mathrm{P}=$ power in Watts
$\mathrm{E}=$ voltage in Volts
I = current in Amperes

## Inductors:

Inductors in Series:

$$
\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{1}+\mathrm{L}_{2}+\ldots .+\mathrm{L}_{\mathrm{N}}
$$

Note: same formula as resistors in series

Inductors in Parallel:


Note: same formula as resistors in parallel.

## Capacitors:

## Capacitors in Parallel:

$$
C_{T}=C_{1}+C_{2}+\ldots .+C_{N}
$$

Note: same formula as resistors in series.

## Capacitors in Series:



Note: same formula as resistors in parallel.

## Reactance:

## Inductive Reactance:

$$
X_{L}=2 \times P I \times f \times L
$$

Where:
$\mathrm{X}=$ inductive reactance in ohms
$2 \times \mathrm{PI}=6.28$
$\mathrm{f}=$ frequency in hertz
$\mathrm{L}=$ inductance in henries

## Capacitive Reactance:

$$
X_{C}=\frac{1}{2 \times-------}
$$

Where:
$\mathrm{X}=$ capacitive reactance in ohms
$2 \times \mathrm{PI}=6.28$
$\mathrm{f}=$ frequency in hertz
C = capacitance in farads

## Resonance:

$$
\mathrm{f}_{\mathrm{R}}=\frac{1}{2 \times------------\mathrm{PI} \times \operatorname{SQRT}(\mathrm{L} \times \mathrm{C})}
$$

Where:
$\mathrm{f}=$ resonance frequency
$2 \mathrm{PI}=6.28$
$\mathrm{L}=$ inductance in henrys
C = capacitance in farads
SQRT is short for Square Root

## Wavelength:

$$
\begin{aligned}
& \text { Wavelength }=---\quad \begin{array}{l}
\text { c } \\
c=--------- \\
\text { Wavelength }
\end{array} .
\end{aligned}
$$

Where:
Wavelength is in metres
f = frequency in Hertz
c = speed of light (300 000000 metres/second)

This can be simplified if we consider frequency in megahertz:

$$
f=\frac{300}{\text { Wavelength }}
$$



Where:
Wavelength is in metres
$\mathrm{f}=$ frequency in Hertz
c = speed of light (300 000000 metres/second)
Remember: this is for a full wavelength. Divide by two for a half wavelength.

## Frequency and Period Relationships:

$$
\begin{aligned}
& \text { frequency }=-----\quad \begin{array}{c}
1 \\
\text { time }
\end{array} \\
& f=-\begin{array}{r}
1 \\
t
\end{array} \\
& \text { time }=\frac{1}{\text { frequency }} \\
& t=---\quad \begin{array}{c}
1 \\
f
\end{array}
\end{aligned}
$$

Where:
t is the time, called period in this case
f is the frequency
Example: what is the frequency of a waveform having a period of 0.001 seconds?

$$
f=\begin{gathered}
1 \\
---
\end{gathered}
$$

```
    t
f=------
f = 1 000 (Hz)
```

Example: what is the period of a signal of 500 Hz ?

$$
\begin{aligned}
& t=\begin{array}{c}
1 \\
f
\end{array} \\
& \mathrm{t}=\stackrel{1}{--\mathbf{- 0}} \begin{array}{c} 
\\
500 \\
(\mathrm{~Hz})
\end{array} \\
& \mathrm{t}=0.002 \text { (seconds) }
\end{aligned}
$$

(this is the time it takes for 1 cycle to occur.)

